
1. Introduction to Flow Control

Flow control refers to the order in which statements of a program are executed. By default, a C
program executes statements sequentially (line by line). However, real-life problems require decision-
making and branching.

Flow control statements allow a program to:

 Make decisions
 Execute different blocks of code
 Control the program execution path

2. Need for Decision Making in C

Decision making is required when:

 Different actions are needed for different conditions
 Programs must respond to user input
 Logical conditions must be tested

Example (Real Life)

 If it is raining → take an umbrella
 Else → do not take an umbrella

In C language, this is achieved using if–else statements.

3. Types of Flow Control Statements in C

C language supports three types of flow control statements:

1. Decision Control Statements
o if
o if–else
o nested if
o else–if ladder
o switch

2. Looping Statements
o for
o while
o do–while

3. Jump Statements
o break
o continue
o goto
o return

This chapter focuses on if–else decision control statements.

4. Simple if Statement

The if statement is used to execute a block of code only when a condition is true.

Syntax
if(condition)
{
 statements;
}

Working

 Condition is evaluated
 If condition is true (non-zero) → statements execute
 If condition is false (zero) → statements are skipped

Example
int a = 10;
if(a > 5)
{
 printf("a is greater than 5");
}

5. if–else Statement

The if–else statement allows execution of one block when condition is true and another block when
condition is false.

Syntax
if(condition)
{
 statements1;
}
else
{
 statements2;
}

Flowchart Explanation

1. Condition is checked
2. If true → if block executes
3. If false → else block executes

Example
int num = 7;
if(num % 2 == 0)
{
 printf("Even number");
}
else
{
 printf("Odd number");
}

6. Nested if–else Statement

When an if or else block contains another if–else, it is called nested if–else.

Syntax
if(condition1)
{
 if(condition2)
 {
 statements;
 }
 else
 {
 statements;
 }
}
else
{
 statements;
}

Example
int a = 10, b = 20;
if(a > b)
{
 printf("a is greater");
}
else
{
 if(b > a)
 {
 printf("b is greater");
 }
 else
 {
 printf("Both are equal");
 }
}

7. else–if Ladder

The else–if ladder is used when multiple conditions need to be checked.

Syntax
if(condition1)
{
 statements;
}
else if(condition2)
{
 statements;
}
else if(condition3)
{
 statements;
}
else
{
 statements;
}

Working

 Conditions are checked from top to bottom
 First true condition block executes
 Remaining conditions are skipped

Example
int marks = 85;
if(marks >= 90)
 printf("Grade A");
else if(marks >= 75)
 printf("Grade B");
else if(marks >= 60)
 printf("Grade C");
else
 printf("Fail");

8. if–else vs else–if Ladder
Feature if–else else–if ladder

Conditions Single Multiple

Usage Simple decisions Multiple decisions

Complexity Low Moderate

9. Conditional Expressions in if Statement

Conditions in if statements use:

 Relational operators (<, >, ==, etc.)
 Logical operators (&&, ||, !)

Example
if(age > 18 && age < 60)
{
 printf("Eligible");
}

10. Use of Braces in if–else

 Braces {} are optional for single statement
 Recommended for clarity and safety

Example
if(x > 0)
 printf("Positive");
else
 printf("Negative");

11. Common Programming Examples

11.1 Check Positive or Negative
if(num > 0)
 printf("Positive");
else
 printf("Negative");

11.2 Largest of Two Numbers
if(a > b)
 printf("a is largest");
else
 printf("b is largest");

11.3 Leap Year Check
if(year % 4 == 0)
 printf("Leap Year");
else
 printf("Not Leap Year");

12. Common Errors in if–else

1. Using = instead of ==
2. Missing braces
3. Wrong logical conditions
4. Incorrect nesting
5. Semicolon after if condition

Example of Error
if(a = 5) // Wrong

13. Advantages of if–else Statement

 Easy to understand
 Improves program logic
 Useful for decision making
 Reduces code complexity

14. Limitations of if–else Statement

 Becomes complex for many conditions
 Hard to manage deeply nested if–else
 switch statement may be better in some cases

15. Conclusion

Flow control using if–else statements is a fundamental concept in C programming. It allows programs to
make decisions and execute appropriate code blocks based on conditions. A strong understanding of if–
else statements helps in writing efficient, logical, and error-free programs.

