1. Introduction to Flow Control

Flow control refers to the order in which statements of a program are executed. By default, a C
program executes statements sequentially (line by line). However, real-life problems require decision-
making and branching.
Flow control statements allow a program to:

e Make decisions

o Execute different blocks of code
e Control the program execution path

2. Need for Decision Making in C

Decision making is required when:
o Different actions are needed for different conditions
e Programs must respond to user input

e Logical conditions must be tested

Example (Real Life)

o Ifitisraining - take an umbrella
e Else — do not take an umbrella

In C language, this is achieved using if-else statements.

3. Types of Flow Control Statements in C

C language supports three types of flow control statements:

1. Decision Control Statements

o if
o if-else
o nested if
o else-ifladder
o switch
2. Looping Statements
o for
o while

o do-while



3. Jump Statements
break
continue
goto
return

O O O O

This chapter focuses on if-else decision control statements.

4. Simple if Statement

The if statement is used to execute a block of code only when a condition is true.

Syntax
if(condition)

{

statements;

}
Working
o Condition is evaluated

o If condition is true (non-zero) — statements execute
o If condition is false (zero) — statements are skipped

Example

printf("a is greater than 5");

5. if—else Statement

The if-else statement allows execution of one block when condition is true and another block when
condition is false.

Syntax
if(condition)

{
}

else

{

statements1;

statements2;




Flowchart Explanation

1. Condition is checked
2. Iftrue - if block executes
3. If false — else block executes

Example

int num = 7;
if(num % 2 ==0)
{

printf("Even number");

}

else

{
printf("0dd number");

6. Nested if—else Statement

When an if or else block contains another if-else, it is called nested if-else.

Syntax
if(condition1)

{

if(condition2)

{

statements;

}

else

{

statements;

}
}

else

{

statements;

Example
inta=10,b=20;
if(a>b)

{

printf("a is greater");

}

else

printf("b is greater");

}

else

{
printf("Both are equal");

}




7. else—if Ladder

The else-if ladder is used when multiple conditions need to be checked.

Syntax
if(condition1)

{

statements;

else if(condition2)

{

statements;

}

else if(condition3)

{
}

else

{

statements;

statements;

Working

e Conditions are checked from top to bottom
o First true condition block executes
e Remaining conditions are skipped

Example

int marks = 85;

if(marks >=90)
printf("Grade A");

else if(marks >=75)

printf("Grade B");
else if(marks >= 60)

printf("Grade C");
else

printf("Fail™);

8. if—else vs else—if Ladder

Feature if-else else-if ladder
Conditions Single Multiple
Usage Simple decisions Multiple decisions

Complexity Low Moderate




9. Conditional Expressions in if Statement

Conditions in if statements use:

e Relational operators (<, >, ==, etc.)
e Logical operators (&&, |, !)

Example
if(age > 18 && age < 60)

printf("Eligible");

10. Use of Braces in if-else

e Braces {} are optional for single statement
e Recommended for clarity and safety

Example
if(x>0)
printf("Positive");

else
printf("Negative");

11. Common Programming Examples

11.1 Check Positive or Negative
if(num > 0)
printf("Positive");

else
printf("Negative");

11.2 Largest of Two Numbers
if(a>b)
printf("a is largest");

11.3 Leap Year Check
if(year % 4 ==0)
printf("Leap Year");

else
printf("Not Leap Year");




12. Common Errors in if—else

Using = instead of ==
Missing braces

Wrong logical conditions
Incorrect nesting
Semicolon after if condition

SAN R

Example of Error

13. Advantages of if-else Statement

Easy to understand
Improves program logic
Useful for decision making
Reduces code complexity

14. Limitations of if-else Statement

e Becomes complex for many conditions
e Hard to manage deeply nested if-else
e switch statement may be better in some cases

15. Conclusion

Flow control using if-else statements is a fundamental concept in C programming. It allows programs to
make decisions and execute appropriate code blocks based on conditions. A strong understanding of if-
else statements helps in writing efficient, logical, and error-free programs.



